TYPE 1 GAUCHER DISEASE PRESENTING AS PERSISTENT THROMBOCYTOPENIA, ASSOCIATED FACTOR XI DEFICIENCY & EMERGENT MYELOMA

Trish Hyland, Medical Scientist, Department of Haematology, Cork University Hospital
INTRODUCTION

- Gaucher disease (GB) is an autosomal recessive inherited disorder of glycolipid storage
- Caused by absence or low activity of glucocerebrosidase (Gcase) resulting in accumulation of its substrate glucocerebroside in macrophages, termed “Gaucher cells”
- Gaucher cells infiltrate the reticuloendothelial system
- Type 1 GD is pan-ethnic, incidence of 1:100,000 but most common in Ashkenazi Jews (1: 450)
- It is estimated to affect approximately 2-4% of the entire Irish community
INTRODUCTION

- It presents at any age - infancy to adulthood
- Clinical manifestations include hepatosplenomegaly, pancytopenia and bone complications
- Most frequent presentations are with symptomatic splenomegaly or thrombocytopenia
- Thrombocytopenia is caused by hypersplenism and/or bone marrow infiltration by Gaucher cells compromising megakaryopoiesis
CASE PRESENTATION

- 27 year old lady from Lithuania referred to Haematology team, Cork University Hospital with thrombocytopenia in pregnancy (12 weeks)

- Full blood count: **Platelet count - 55 x 10⁹ /L**

 Haemoglobin - 10.4 g/L

 White cell count – 4.8 x 10⁹ /L

- Past medical history;

 - Hepatitis C infection
 - Osteomyelitis
 - Nephritis
 - Chronic thrombocytopenia
 - No significant bleeding history
LABORATORY INVESTIGATION

- Clotting screen:
 - PT 11.2 (9.7-11.3 secs)
 - APTT 36 (23-31 secs)
- Further clotting studies/factor assays performed:
 - Inhibitor screen - negative
 - Lupus screen – normal
 - Antiphospholipid antibodies - normal
 - Von Willebrand screen – normal
 - Factor IX – w/n normal range
 - Factor XII – w/n normal range
 - Factor XI level at 43 % - mild deficiency
LABORATORY INVESTIGATION

- Hereditary or acquired, most commonly factor XI deficiency is an inherited coagulation abnormality
- Her pregnancy proceeded uneventfully & patients platelet count remained stable between $55\, -70\, \times\, 10^9/L$
- She attended Haematology OPD clinic for follow-up;
 - **Persistent thrombocytopenia**
 - Clinical splenomegaly
 - Bone pains and fatigue
- Bone marrow biopsy and peripheral blood morphology was performed
 - Blood morphology; normochromic normocytic anaemia
 - Bone marrow aspirate showed the presence of Gaucher cells
LABORATORY DIAGNOSIS

- Demonstration of the presence of Gaucher cells is not diagnostic of GD

- Pseudo-Gaucher cells/storage cells are morphologically similar thus could be confused with Gaucher cells

- Present in other haematological conditions e.g. chronic myeloid leukaemia, haemoglobinopathies and other storage conditions like Niemann pick disease
LABORATORY DIAGNOSIS

- Measurement of glucocerebrosidase activity in peripheral blood leukocytes

- Chitotriosidase is an enzyme that is overexpressed by Gaucher cells. A prognostic marker useful for indicating disease burden and monitoring treatment of GD

- Patient samples referred to lysosomal storage disease unit, Royal Free hospital, London
 - Glucocerebrosidase 0.2 umol/g/h (1.0-5.0)
 - < 15% of mean normal activity is diagnostic of GD
 - Chitotriosidase 20600 umol/l/h (4.0-120)
DIAGNOSIS - IMAGING

- DEXA scan was performed – normal
- Whole skeletal MRI;
 - Diffuse marrow infiltration
 - Osteonecrosis of humerus (right and left)
 - Established bone infarction
TREATMENT

- 18 month wait before treatment commenced owing to cost; €250,000 a year for ERT

- Patient commenced on Enzyme Replacement Therapy; Velaglucerase, given intravenously at home, twice weekly

- Reduces the accumulation of the toxic substrates

Response to treatment:

- Improved bone pain
- Reduced fatigue
- No new bone lesion and evidence of healing in skeletal disease
<table>
<thead>
<tr>
<th>Laboratory results pre-treatment</th>
<th>Laboratory results post-treatment (~ 20 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full blood count</td>
<td>Full blood count</td>
</tr>
<tr>
<td>Hb: 11.3 g/dl</td>
<td>Hb: 13.4 g/dl</td>
</tr>
<tr>
<td>PLT: 76 x10⁹/L</td>
<td>PLT: 199 x x10⁹/L</td>
</tr>
<tr>
<td>Coagulation</td>
<td>Coagulation</td>
</tr>
<tr>
<td>APTT: 37 secs</td>
<td>APTT: 25 secs</td>
</tr>
<tr>
<td>Factor XI: 0.500 IU/ml</td>
<td>Factor XI: 1.110 IU/ml</td>
</tr>
<tr>
<td>Chitotriosidase</td>
<td>Chitotriosidase</td>
</tr>
<tr>
<td>20600 umol/L/hr (4.0-120 umol/L/hr)</td>
<td>935 umol/L/hr</td>
</tr>
</tbody>
</table>
FACTOR XI DEFICIENCY & GAUCHER DISEASE

- Normalisation of Factor XI levels post treatment indicated that this deficiency was acquired and not inherited.

- In type 1 GD, coagulation abnormalities, in particular deficiency of factor IX and XI are found in a number of patients.

- Consumption of the coagulation factor due on-going low level coagulation activation possibly due to mononuclear cell activation.
MYELOMA & GAUCHER DISEASE

- GD patients have increased risk of developing monoclonal gammopathies in particular multiple myeloma

- Hypothesised mechanism;
 - Gaucher cell resembles an alternatively activated macrophage which is believed to cause hyper stimulation of the immune system
In GD, elevated levels of pro-inflammatory cytokines in particular interleukin 6 (IL-6), may correlate with clonal expansion of B cells. IL-6 is involved in growth and survival of myeloma cells.

Concern about the association of GD and myeloma prompted further laboratory testing:

- Serum protein electrophoresis
- Serum free light chain assay
<table>
<thead>
<tr>
<th>Serum free light chain assay:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Free kappa chains</td>
<td>13.20 mg/L</td>
<td>(3.3 – 19.4)</td>
</tr>
<tr>
<td>Free lambda chains</td>
<td>101.00 mg/L</td>
<td>(5.71 – 26.3)</td>
</tr>
<tr>
<td>Serum K: L ratio</td>
<td>0.13</td>
<td>(0.26 – 1.65)</td>
</tr>
<tr>
<td>Serum protein electrophoresis:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG</td>
<td>18.78 g/L</td>
<td>(6.0 – 16)</td>
</tr>
<tr>
<td>IgA</td>
<td>2.13 g/L</td>
<td>(0.8 – 2.8)</td>
</tr>
<tr>
<td>IgM</td>
<td>1.02 g/L</td>
<td>(0.5 – 1.9)</td>
</tr>
<tr>
<td>Paraprotein level</td>
<td>2.6 g/L</td>
<td></td>
</tr>
</tbody>
</table>
LABORATORY DIAGNOSIS

- Serum calcium - normal
- Serum creatinine – normal
- Haemoglobin – 13.4 g/dl

Diagnosis of monoclonal gammopathy of undetermined significance (MGUS)

- Four month follow-up, patient complaining of increasing bone pain.
- Paraprotein levels and serum free light chains were re-checked:
<table>
<thead>
<tr>
<th></th>
<th>Sept 2015</th>
<th>May 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum free light chain assay:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free kappa chains</td>
<td>17.30 mg/L</td>
<td>13.20 mg/L</td>
</tr>
<tr>
<td>Free lambda chains</td>
<td>342 mg/L</td>
<td>101 mg/L</td>
</tr>
<tr>
<td>Serum K: L ratio</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>Serum protein electrophoresis:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG</td>
<td>25.81 g/L</td>
<td>18.78 g/L</td>
</tr>
<tr>
<td>IgA</td>
<td>1.17 g/L</td>
<td>2.13 g/L</td>
</tr>
<tr>
<td>IgM</td>
<td>0.76 g/L</td>
<td>1.02 g/L</td>
</tr>
<tr>
<td>Paraprotein level</td>
<td>21.8 g/L</td>
<td>2.6 g/L</td>
</tr>
</tbody>
</table>
LABORATORY DIAGNOSIS

Bone marrow biopsy;
- Plasma cells present; >60% in trephine and approximately 30% in aspirate

Immunophenotyping:
- Immunophenotyping detected 12% clonal plasma cells

Skeletal survey;
- Skeletal survey showed new lytic bony lesions

The results were consistent with a diagnosis of multiple myeloma (IgG)
TREATMENT

- Initially the patient was treated with chemotherapy, then underwent an autologous stem cell transplant

- Patient had an excellent response to treatment, now on maintenance chemotherapy

- Continued Enzyme replacement therapy throughout

- Currently clinically very well
CONCLUSION

- Heightened awareness of the association of Gaucher Disease with splenomegaly and unremitting haematological abnormalities like thrombocytopenia may help minimise delayed diagnosis of this rare disease

- Highlight the associated myeloma risk with this disease
ACKNOWLEDGEMENTS

Dr Cleona Duggan, Consultant Haematologist, Cork University Hospital

Dr Rachael Brodie, Specialist Registrar, Haematology, Cork University Hospital

Dr Norma Reidy, Chief Medical Scientist, Haematology, Cork University Hospital